
Building a Privacy-Preserving Semantic Overlay for
Peer-to-Peer Networks

Niels Zeilemaker #1, Zekeriya Erkin ∗2, Paolo Palmieri #3, Johan Pouwelse #4

# Parallel and Distributed Systems Group, Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands

1 n.s.m.zeilemaker@tudelft.nl 3 p.palmieri@tudelft.nl 4 j.a.pouwelse@tudelft.nl
∗ Information Security and Privacy Lab, Delft University of Technology

Mekelweg 4, 2628 CD, Delft, The Netherlands
2 z.erkin@tudelft.nl

Abstract—Searching a Peer-to-Peer (P2P) network without
using a central index has been widely investigated but proved to
be very difficult. Various strategies have been proposed, however
no practical solution to date also addresses privacy concerns.

By clustering peers which have similar interests, a semantic
overlay provides a method for achieving scalable search. Tradi-
tionally, in order to find similar peers, a peer is required to fully
expose its preferences for items or content, therefore disclosing
this private information. However, in a hostile environment, such
as a P2P system, a peer can not know the true identity or
intentions of fellow peers.

In this paper, we propose two protocols for building a semantic
overlay in a privacy-preserving manner by modifying existing
solutions to the Private Set Intersection (PSI) problem. Peers
in our overlay compute their similarity to other peers in the
encrypted domain, allowing them to find similar peers. Using
homomorphic encryption, peers can carrying out computations
on encrypted values, without needing to decrypt them first.

We propose two protocols, one based on the inner product of
vectors, the other on multivariate polynomial evaluation, which
are able to compute a similarity value between two peers. Both
protocols are implemented on top of an existing P2P platform
and are designed for actual deployment. Using a supercomputer
and a dataset extracted from a real world instance of a semantic
overlay, we emulate our protocols in a network consisting of
a thousand peers. Finally, we show the actual computational
and bandwidth usage of the protocols as recorded during those
experiments.

I. INTRODUCTION

Over recent years numerous papers have been published on
designing systems which provide fully decentralized search
in Peer-to-Peer (P2P) networks. However, searching a vast
network of peers sharing numerous items has proved to be
difficult. This is, to a large extent, determined by the manner
in which peers are organized.

Traditionally, P2P networks can be divided into four classes:
structured, unstructured, hybrid, and semantic networks. Struc-
tured networks allow peers to efficiently locate items, but

c©2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

keeping information stored in the network up to date is costly.
Unstructured networks do not suffer from this overhead, but
can not provide a method for efficiently locating items. Hybrid
networks can provide both, by electing superpeers to index and
locate items of ordinary peers. Lastly, semantic networks allow
peers to locate items by connecting them to peers with similar
interests. This greatly reduces the number of peers contacted
during a search (as a message is not forwarded), but at the
same time reduces the number of items that can be found.

Even though the aforementioned methods are well re-
searched, privacy considerations are not addressed. More-
over, only two out of the four approaches mentioned can
be considered for practical purposes: a hybrid or a semantic
network, as both structured and unstructured networks suffer
from substantial overheads.

Concerning privacy, a hybrid network, such as the one used
by Kazaa [1], has a significant drawback as it requires peers
to fully expose the items they are sharing with the superpeers.
This violates the privacy of the peers, as the superpeers are
trusted with this information without knowing true identities or
intentions of these peers. Furthermore, by sending a query to
a superpeer, and thus trusting it, a query is then forwarded to
a large number of unknown peers in the superpeer-network.
All of them are implicitly trusted with the privacy sensitive
material which is present in the search queries [2].

Current deployed semantic networks have similar draw-
backs [3], [4], as peers exchange their preferences in plain text
with randomly selected peers, allowing peers to compute the
similarity between them. We define preferences as the items
for which we want to compute similarity, e.g. a list of favorite
movies, jokes, etc. Exchanging these lists also exposes the
preferences of a peer to all. In this paper, however, we improve
upon this by extending existing cryptographic protocols, which
allow us to find common elements in two private sets without
exposing the sets themselves.

This problem is known in cryptography as the Private Set
Intersection (PSI) problem [5]. In this paper, we focus on
the PSI problem within the P2P context to find similar peers
in a distributed network. There are a number of existing
PSI protocols for different privacy requirements and security
assumptions. Unfortunately, while previous work provably



protects private data, the underlying cryptographic approaches
have not seen implementation in a P2P environment, due to
their high overhead, either in computation, bandwidth, or both.

A. Contribution

In this paper, we propose the first practical, fully imple-
mented method for building a semantic overlay in a privacy-
preserving manner. We do so by designing two protocols that
allow for the computation of similarity between peers while
preserving the privacy of each peer’s preferences. The pro-
tocols adapt solutions from the PSI problem in cryptography
to fit the needs of large P2P networks. We thoroughly test
the performance of the implementations in a real network
by emulating an instance with a thousand peers. Using a
dataset extracted from an existing semantic overlay, we show
that our solutions are scalable and efficient in terms of both
computation and bandwidth. Most importantly, they fit nicely
within the real world limitations of P2P networks, since they
do not require any trusted third party or assume the possibility
of a connection between any two peers.

B. Related Work

Structured networks, such as Chord [6], Kademlia [7], or
Pastry [8], allow peers to efficiently locate information by
predefining where items should be stored and how items can
be found. In their approaches, keywords are converted into
hashes and then used to route a query to the responsible peer.
This responsible peer, maintains a list of peers which have
matching items for the hashed keywords.

However, the costs associated with keeping such a network
up to date are prohibitively high. For each keyword by which a
peer wants its items to be found, it needs to “announce” this to
the responsible peer, i.e., in the case of a file-sharing system,
a peer needs to split the name of a file into separate keywords
and send an announce-message to each peer responsible for
that keyword. Hence, multiple announces are required for each
shared file causing a substantial portion of the bandwidth
available at a peer to be used. Moreover, as peers in P2P
networks leave and join the system at a high rate (churn),
peers need to re-announce their items on a regular basis.

Unstructured networks require much less maintenance.
However, in contrast to structured networks, locating items
is much more difficult in an unstructured network. Naive
approaches, such as implemented by Gnutella in 2000 [9],
caused each search query to be sent to almost all the peers in
the network (flooding), resulting in a substantial overhead.

Later in 2001, Kazaa improved upon this concept by creat-
ing a hybrid network [1]. Their network consists of two types
of peers; superpeers and ordinary peers. Superpeers index the
ordinary peers connected to them and thereby dramatically
reduce the number of peers contacted during each search.

In semantic networks, peers are clustered by their interest
for the same content. When issuing a search query, a peer
sends a message to the peers that have similar interests. In
this way, the number of peers contacted during a search is
greatly reduced (as a message is not forwarded), but also

causing that not all items can be found (as scope is limited).
Various clustering approaches have been suggested, which
usually either group peers into a fixed number of clusters,
or let peers independently find their most similar neighbors.

The challenge, as described in the introduction, of finding
common elements in two sets without revealing the elements
of the sets, falls into the more general category of comparing
private information from two parties without leaking the
information itself. It can therefore be formulated and solved
in terms of two-party secure function evaluation.

The PSI problem has been specifically discussed in various
recent works, and is generally solved by protocols based on
the homomorphic properties of an encryption scheme (most
notably, ElGamal or Paillier). In 2004, Freedman et al. pre-
sented a cryptographic protocol based on oblivious polynomial
evaluation and the Paillier cryptosystem [5]. The work by
Kissner and Song also focuses on polynomial evaluation, but
the authors propose protocols for a number of set operations,
including unions, in a multi-party environment [10]. The most
efficient set of polynomial protocols to date is instead the one
proposed by Kiayias and Mitrofanova in [11], and is based on
an ElGamal encryption scheme. Hazay and Lindell proposed
a different approach to the PSI problem [12], which they solve
using oblivious pseudo-random functions.

Another useful cryptographic tool in secure two-party eval-
uation protocols is identity based encryption [13]. It has
been used for the first time for PSI by De Cristofaro et
al. in [14]. Their assumption is that the first party receives
an authorization from a trusted entity before being able to
make queries to the other party’s set using identity based
encryption. Later, this line of research further progressed in
terms of efficiency [15], [16], [17]. In this paper, however, we
do not assume any trusted third party, and therefore all the
communication in the protocols we propose happens between
the two set owners, namely Alice and Bob.

II. PRIVACY-PRESERVING PROTOCOLS

We propose two protocols that allow a peer in a P2P network
to calculate its similarity to other peers. In this section, we
assume a setting in which the first peer, Alice, has a set of
items IA. Alice queries a second peer, Bob (which has a set of
items IB), in order to compute the number of common items
in the two sets without disclosing the sets themselves. Since
we are interested in finding the similarity between two peers,
we use the cardinality of the intersection between the two sets
as a similarity score simA,B .

Both protocols are based on additively homomorphic en-
cryption, namely the Paillier cryptosystem [18], that allows to
add two plaintext messages by operating on their encryptions:

Dsk(Epk(m1)× Epk(m2)) = m1 +m2 . (1)

where m1 and m2 are plaintexts and Epk() and Dsk () the
encryption and decryption functions, respectively. It follows
that, given a constant c, the following also holds:

Dsk(Epk(m)c) = m× c . (2)

2



The Paillier cryptosystem is probabilistic, in the sense that
a fresh random parameter is introduced as input in each
encryption operation.

A. Private Set Intersection Protocol I

The first protocol is based on the inner product of vectors.
In order for the algorithm to work, we make the assump-
tion that there is a global list of all possible items, IG =
{IG,1, . . . , IG,M}, of size M and this list is available to all
peers. Based on that, each peer N creates a binary vector
ΓN = 〈γ1, . . . , γM 〉, for the items in the global list. If node
N has item IG,i in his set IN , then γN,i = 1 else γN,i = 0.

Protocol 1: Alice selects the secret key parameters for a
Paillier encryption scheme, and publishes the respective public
key and parameters. The communication proceeds as follows:

1) Alice encrypts each term in her list using her public key:
EpkA(γA,i) for 1 ≤ i ≤M , and sends them to Bob.

2) Bob computes the similarity score by using the homo-
morphic property of the encryption scheme as follows:

EpkA(simA,B) = EpkA

(
M∑
i=1

γA,i · γB,i

)

:=

M∏
i=1

EpkA(γA,i)
γB,i (3)

Bob then sends EpkA(simA,B) to Alice.
3) Alice obtains the similarity score simA,B after decryp-

tion.

It could be argued that step 2 is computationally expensive
due to modular exponentiation. However, in practice this
computation can be performed with minimum effort. In fact,
the values of γB,i are either 1 or 0. Therefore, Bob only
needs to multiply Alice’s encrypted values for i values where
γB,i = 1 (this corresponds to adding in the plain text domain)
and re-randomize the final encryption. Thus, the computation
becomes:

M∏
i=1,γB,i=1

EpkA(γA,i) . (4)

This simplification results in a very efficient protocol in
terms of computation: Alice performs M encryptions, Bob
performs M modular multiplications in the worst case, and
Alice performs 1 decryption. The bandwidth requirement, on
the other hand, is linear in the number M as Alice sends M
encryptions to Bob.

B. Private Set Intersection Protocol II

Contrary to the previous protocol, this approach does not
assume the existence of a global list of possible items, and
is therefore suited for settings in which such an assumption
is unrealistic. Here we compute the cardinality of the inter-
section of two sets using multivariate polynomial evaluation.
In the following we propose a modification of the protocol
introduced by Freedman et al. [19] that follows this technique.

Protocol 2: Alice selects the secret key parameters for a Pail-
lier encryption scheme, and publishes the respective public key
and parameters. Communication between the parties proceeds
as follows:

1) Alice builds a polynomial having roots in each of the
items contained in her set IA. That is, she computes the
n+ 1 coefficients α0, . . . , αn of the polynomial

f (x) = α0 + α1x+ α2x
2 + . . .+ αnx

n (5)

for which f(IA,i) = 0 for any item in her set.
2) Next, Alice encrypts the coefficients and sends them to

Bob EpkA (f (x)).
3) Bob uses the homomorphic properties of the encryption

scheme to evaluate the polynomial for each item in his set
ΓB , and multiplies each result by a fresh random number
ri, obtaining EpkA (ri · f(IB,i)).

4) Bob adds all evaluated polynomials to a list, permutates
the order, and sends it back to Alice.

5) After receiving the list of evaluated polynomials from
Bob, Alice decrypts each ciphertext and counts the num-
ber of 0’s she received. The ciphertexts decrypt to 0 in
case of an item in the intersection IA∩IB , or to a random
value otherwise. Therefore, simA,B is the number of 0’s
decrypted by Alice.1

The polynomial required in step 1 can be obtained by simple
multiplication of the factors (x− IA,i). This way, the resulting
polynomial will have the most significant coefficient take the
value 1 and a degree equal to the number of items in Alice’s
set.

Computationally this protocol is more expensive than Pro-
tocol 1. Alice needs to perform |IA| encryptions, Bob needs to
perform |IB | · |IA| modular multiplications, and Alice needs
to perform |IB | decryptions. The required bandwidth for the
protocol is linear in the number of items both Alice and Bob
have in their sets.

However, the bandwidth efficiency of this protocol can be
improved by adopting a partitioning scheme. By reducing the
degree of the polynomial, we increase the bandwidth efficiency
as we can use a smaller keysize and increase the size of
the universe at the same time. We do so by partitioning
the universe (or domain) of possible items into a number
of subsets. Each polynomial will then be relative to the
items contained in one specific partition only, thus reducing
on average the values of the coefficients and therefore the
communication cost.

Without a partitioning scheme, a universe in the order of
magnitude of millions of items or more (for instance, 224)
and a relatively small set counting 100 items, would require
a keysize of 1200 bits. A polynomial with a degree of 100,

1Let us observe that, if Bob also adds an encryption of the value of his
input IB,i, obtaining therefore EpkA

(
r · f

(
IB,i

)
+ IB,i

)
, the result of

the computation is the value of the element IB,i if IB,i ∈ IA ∩ IB , and a
random value otherwise. This would allow us to identify the elements in the
intersection set and therefore obtain a private set matching protocol, as done
in [19].

3



would in this case have a least significant coefficient with
a maximum possible value close to 22400. Encrypting such
a large coefficient would require a 1200 bit key, as Pallier
encryption works over modulo n2.

Partitioning the universe inserts a step in the protocol before
step 1, in which Alice needs to divide her set of items IA into
multiple subsets. For each subset, or partition, she needs to
compute a polynomial and send it to Bob together with her
partitioning choice. Note that the number of coefficients Alice
sends to Bob does not change. The resulting improvement
allows us to accommodate an increase in the size of the
universe depending on the expected maximum number of
items per partition. E.g. if we expect a maximum number of
items per partition of 25, then we can use an universe of size
280 and a 1024 bit key. However, if Alice has more than the
maximum number of items for a given partition, she is required
to make a selection.

A similar reduction in communication cost can be observed
from Bob, as he can remove items from his set IB which do
not corresponding to the received partitions. However, in order
to maximize the benefits without compromising the security of
the protocol, the number of distinct partitions should be small
enough compared to the number of elements in the universe,
but comparable to the number of elements in IA.

C. Security Discussion

Both protocols protect Alice’s privacy by hiding her item set
from Bob. The set is first encoded (as a vector in Protocol 1,
as the coefficients of a polynomial in Protocol 2), and then
transmitted to Bob in encrypted form. Due to the homomor-
phic properties of the chosen encryption scheme, Bob can not
decrypt, but can perform simple operations on the received
values. In both algorithms, he computes a function that takes
Alice’s encrypted values and his own values as inputs, and
sends the result to Alice, who decrypts using her secret key.
His inputs are hidden thanks to the properties of the powers
in the case of the first protocol, and to multiplication by
random number in the second. Since the encryption scheme
is probabilistic, the same plaintext encrypted twice results
in two different outputs. This prevents parties from directly
comparing the encrypted values.

We note that in Protocol 2, Alice discloses the number of
items that are being compared (by counting the number of
coefficients minus the number of polynomials). This allows
Bob to decide a minimum number of items below which he
will not compute the intersection, thus preventing Alice to run
the protocol for a set composed of one item only and learning
whether or not Bob possesses that specific item.

Both protocols achieve security in the semi-honest setting
[19]. This setting, also known as honest but curious, assumes
that the parties do not deviate from the protocol, and therefore
includes the case of passive wiretappers, the most common
threat to P2P networks. The protocols are however not secure
against active adversaries. While an active eavesdropper de-
ploying a man-in-the-middle attack by modifying the messages
between the parties can be detected by adding signatures

to the messages themselves, the case of a malicious Alice
or Bob requires significant modifications to the protocols.
In particular, a zero-knowledge proof protocol can be used
to prevent Bob from pretending he always has a degree of
similarity with Alice [20]. We assume Bob has no interest in
pretending not to have a similarity with Alice, since in that
case he could just not reply to Alice’s query.

A zero knowledge protocol, together with a commitment
scheme, is also useful in preventing malicious attacks by Alice
[21]. We note however that Protocol 2 already offers some
degree of protection against a malicious Alice. In fact, besides
improving bandwidth efficiency, another benefit of partitioning
is preventing binary search attacks. Under such a scenario,
Alice computes multiple polynomials with the same roots
(for example 1 polynomial having a root in the first item,
2 polynomials for the second item, 4 for the third and so on).
This allows her to identify exactly which items Bob has by
counting the number 0’s returned by Bob. However, since Bob
evaluates a polynomial only at elements in the corresponding
partition and replies to only one polynomial for each partition,
this attack can not be carried out.

D. Improving Discovery Speed

As introduced in the previous sections, both protocols allow
Alice to compute a similarity score simA,B between her and
Bob. However, in order to improve the speed of discovering
peers which are similar to Alice we extend these protocols
with forwarding. When sending a request to Bob, Bob will
not only execute his steps of the protocol, but as well forward
the request of Alice to his most similar neighbors. Bob will
combine all replies from his neighbors with his own and send
it back to Alice, allowing her to discover the similarity not
only between her and Bob, but also between her and Bob’s
neighbors.

The reasoning behind this is that if Alice and Bob are found
to be similar, then we can expect Alice to be similar to one of
Bob’s most similar peers as well. Moreover, using Bob as a
proxy is required, as we assume an active connection between
her and Bob, but the same can not be assumed between her
and Bob’s neighbors in a P2P environment, due to firewalls,
NAT-routers, etc.

III. EXPERIMENTAL RESULTS

To evaluate the performance of the two outlined protocols,
we have deployed 1000 peers on a supercomputer and monitor
the time required to find similar peers. In the following
paragraphs, we elaborate on both the dataset and experimental
setup before discussing the results.

A. Dataset

Our dataset is constructed based on collected information
from a real-world P2P file sharing network, called Tribler [4].
This ensures that our experimental results are close as possible
to an actual implementation. Peers in the Tribler P2P network
construct a semantic overlay in a non-privacy preserving
manner. Using a BuddyCast message, peers send a list of

4



TABLE I
DATASETS CREATED FOR PERFORMANCE EVALUATION

Full dataset Subset

Peers 74 797 1 000
Items 296 358 7 635
Preferences 1 332 508 25 429
Average #preferences per peer 18 25

their preferences to others in order to compute a similarity
among them. We deployed instrumented clients into the Tribler
network, which collected these lists. Using the generated files,
we then constructed a dataset containing the preferences of the
peers in the Tribler network. In total, we collected the prefer-
ences of almost 75 000 peers. Those peers preferred 1 332 508
items, with an average of 17.81 items being preferred per peer.

For the experiment, we made a subset and selected 1000
peers at random. Furthermore, we made sure that each peer
had at least 10 items, and each item was in the preference lists
of at least two peers. This requirement causes every item in
the preference list of a peer to overlap with at least one other
peer. Full details of both datasets are shown in Table I.

Using the data from a deployed semantic overlay allows us
to compare the performance of both protocols without having
to resort to a synthetic dataset.

B. Experimental setup

To evaluate the time required to find similar peers we
implemented a semantic overlay, in which peers connect to
another peer every 5 seconds in a semi-random fashion. After
connecting to a new peer, one of the protocols will be used
to compute a similarity score. Similarity scores are used to
create a list containing the 10 peers, which are most similar to
it. A peer then uses this list to maintain an open connection to
those 10 neighbors. Related work has shown that maintaining
a connection to 10 neighbors yields a good trade-off between
the cost of discovering those and the expected hit ratio when
performing keyword search [3], [4].

1) Monitoring: Each peer is provided with a list of its
preferences (as defined by the subset), and a list of its
most similar neighbors. Using this similar neighbor list, we
determine if a peer has found its most similar peers or not. This
list is generated using the complete subset, i.e. by computing
the similarities between all peers. During the experiments, we
monitor the peers by comparing the neighbors of each peer to
the static list of its most similar neighbors.

Moreover, in our emulations we want to see the differences
in terms of performance between an “empty” overlay, which
has no connections, and an overlay with existing connections
also known as a bootstrapped overlay. We analyze effects
of peers in the network being bootstrapped on the speed of
discovering similar peers of the non-bootstrapped peers.

2) Infrastructure: During the experiments we use 20
computing-nodes, which all run 50 instances (an instance
is an emulation of a peer trying to find similar peers). In
this way, we create an actual semantic P2P network on the
supercomputer consisting of 1000 peers.

TABLE II
PARAMETERS USED IN EXPERIMENTS

Size of p and q 512 bits
Size of an encrypted value 2048 bits
Number of partitions 256 (1 byte)
Connection interval 5 seconds
Similar neighbors to find 10
Length of preference lists 100

Protocol I Protocol II

0.00

0.25

0.50

0.75

1.00

0 20 40 60 0 20 40 60

Time into experiment (Minutes)

C
o
n
n
e
c
te

d
 t
o
 m

o
s
t 
s
im

ila
r 

n
e
ig

h
b
o
rs

Bootstrapped 100%    90%    50%    10%    0%

Fig. 1. Speed of discovering the 10 most similar neighbors in a network
of 1000 peers. When the network is not completely bootstrapped, the
performance of the non-boostrapped peers is shown.

3) Parameters: Table II shows the used parameters during
the experiments. Both PSI-C protocols are implemented in
Python using GMPY2 which exposes GMP3 to Python.

C. Results

1) Discovery speed: Figure 1 shows the speed of finding
the most similar neighbors for each protocol in an overlay
bootstrapped at different percentages. Comparing both proto-
cols, we can see that the performance difference is minimal.
This is to be expected, as both protocols should compute the
same cardinality. After 10 minutes, both protocols find more
than 50% of all similar neighbors regardless of the level of
bootstrapping of the overlay. However, after 10 minutes the
discovery speed of the protocols degrades. We believe that this
is caused by clustering in the overlay. Although we promote
clustering, as we are building a semantic overlay, it is also
working against us in discovering peers with a clearly different
set of preferences than our current similar neighbors (peers are
stuck in a local optimum).

2) CPU consumption: Figure 2 shows the mean CPU time
peers spend during the experiment. We use CPU time as the
wall time it took to perform the encryption/decryption steps
during the 60 minute run as shown above.

From the figure, we can see that Protocol 2 requires much
more CPU time compared to Protocol 1, especially while
decrypting the received responses from Bob. This is expected,
as in Protocol 2, Bob replies with multiple encrypted evaluated
polynomials while in Protocol 1 he only returns one encrypted
sum. Moreover, we can see that receiving a request from Alice
requires Bob to spend more CPU time in Protocol 2 then in
Protocol 1. This is due to Bob needing to evaluate the multiple
polynomials for each item for which he has matching a

2http://code.google.com/p/gmpy/
3The GNU Multiple Precision Arithmetic Library http://gmplib.org/

5



Protocol I Protocol II

0

50

100

150

Send Receive Decrypt Send Receive Decrypt

Type of operation while executing the protocol

C
P

U
 t
im

e
 s

p
e
n
t 
fo

r 
c
ry

p
to

g
ra

p
h
y
 o

p
e
ra

ti
o
n
s

in
 t
h
e
 6

0
 M

in
u
te

 r
u
n
 (

S
e
c
o
n
d
s
)

Fig. 2. CPU time spent at the encryption/decryption phases of each protocol.

Protocol I Protocol II

0

50

100

150

200

250

Send Forward Reply Send Forward Reply

Type of operation while executing the protocol

B
a
n
d
w

id
th

 u
s
e
d

in
 t
h
e
 6

0
 M

in
u
te

 r
u
n
 (

K
B

y
te

s
)

Fig. 3. Bandwidth usage of both protocols.

partition. In Protocol 1, Bob only has to perform computations
whenever γB, i = 1 as explained in Section II-A.

In both protocols, it is possible to reuse a similarity request
for multiple peers, since the list of preferences of a peer
usually does not change frequently (in our emulations, not at
all). However, it has to be noted that in a situation, in which
the preferences of a peer may vary more frequently, creating
a request using Protocol 1 is more expensive.

3) Bandwidth usage: With respect to the bandwidth usage
of both protocols, Protocol 2 requires less bandwidth. The
most important factor influencing the bandwidth costs is the
dynamic size of the messages in Protocol 2. Protocol 1
always sends a preference vector of a fixed length; in contrast
Protocol 2 sends as many encrypted coefficients as Alice has.
As in our subset, peers have 18 items on average, the expected
bandwidth usage of Protocol 2 is 18% of that of Protocol 1 as
it sends vectors with a length of 100 items (for the sending and
forwarding steps). However, the reply of Protocol 2 requires
more bandwidth as this protocol does not sum all values
computed at Bob, but has to return each evaluated polynomial.

IV. CONCLUSION

In this paper, we proposed, implemented, and evaluated
two protocols that solve the problem of building a privacy
preserving semantic overlay. Our solution extends existing
protocols for the Private Set Intersection problem, in order
to allow two peers to calculate their respective similarity.
In order to show that both protocols are indeed ready for
widespread deployment, we emulated our privacy-preserving
semantic overlay using data from an existing semantic overlay.

Moreover, we showed that neither protocol required a trusted
third party or assumed the possibility of a connection between
any two peers. Therefore both fit nicely within the real world
limitations of a Peer-to-Peer environment.

Each of the proposed protocols introduces a trade-off be-
tween bandwidth and computational overhead. Protocol 1
requires more bandwidth, but less CPU time. Protocol 2 is
the opposite, requiring less bandwidth and more CPU time.

REFERENCES

[1] J. Liang, R. Kumar, and K. Ross, “Understanding kazaa,” Misc, 2004,.
[2] D. C. Howe and H. Nissenbaum, “Trackmenot: Resisting surveillance in

web search,” Lessons from the Identity Trail: Anonymity, Privacy, and
Identity in a Networked Society, pp. 417–436, 2009.

[3] S. Voulgaris and M. Steen, “Epidemic-style management of semantic
overlays for content-based searching,” in Euro-Par 2005 Parallel Pro-
cessing. Springer Berlin Heidelberg, 2005, vol. 3648, pp. 1143–1152.

[4] N. Zeilemaker, M. Capota, A. Bakker, and J. Pouwelse, “Tribler: P2p
media search and sharing,” in 19th ACM international conference on
Multimedia. ACM, 2011, pp. 739–742.

[5] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Advances in Cryptology - EUROCRYPT 2004,
ser. LNCS, vol. 3027. Springer, 2004, pp. 1–19.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ser. SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.

[7] P. Maymounkov and D. Mazires, “Kademlia: A peer-to-peer information
system based on the xor metric,” in Peer-to-Peer Systems. Springer
Berlin Heidelberg, 2002, vol. 2429, pp. 53–65.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in Middleware
2001. Springer Berlin Heidelberg, 2001, vol. 2218, pp. 329–350.

[9] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”
in Peer-to-Peer Computing, 2001. Proceedings. First International Con-
ference on, 2001, pp. 99–100.

[10] L. Kissner and D. Song, “Privacy-preserving set operations,” in in
Advances in Cryptology - CRYPTO 2005, LNCS. Springer, 2005, pp.
241–257.

[11] A. Kiayias and A. Mitrofanova, “Testing disjointness of private datasets,”
in Financial Cryptography, ser. LNCS, vol. 3570. Springer, 2005, pp.
109–124.

[12] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries,”
in 5th conference on Theory of cryptography, ser. TCC’08, pp. 155–175.

[13] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” in CRYPTO ’01. London, UK, UK: Springer-Verlag, 2001,
pp. 213–229.

[14] E. D. Cristofaro, S. Jarecki, J. Kim, and G. Tsudik, “Privacy-preserving
policy-based information transfer,” in PETS ’09, 2009, pp. 164–184.

[15] E. Cristofaro, P. Gasti, and G. Tsudik, “Fast and private computation of
cardinality of set intersection and union,” in Cryptology and Network
Security, ser. LNCS. Springer, 2012, vol. 7712, pp. 218–231.

[16] E. Cristofaro, J. Kim, and G. Tsudik, “Linear-complexity private set
intersection protocols secure in malicious model,” in ASIACRYPT ’10,
ser. LNCS. Springer, 2010, vol. 6477, pp. 213–231.

[17] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear complexity,” in Financial Cryptography, 2010, pp.
143–159.

[18] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Advances in Cryptology — EUROCRYPT ’99,
ser. LNCS, vol. 1592. Springer, May 2-6, 1999, pp. 223–238.

[19] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in EUROCRYPT ’04, ser. LNCS, vol. 3027.
Springer, 2004, pp. 1–19.

[20] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications,” in Proceedings of the twentieth annual ACM
symposium on Theory of computing, ser. STOC ’88, 1988, pp. 103–112.

[21] G. Brassard, D. Chaum, and C. Crépeau, “Minimum disclosure proofs
of knowledge,” J. Comput. Syst. Sci., vol. 37, no. 2, pp. 156–189, Oct.
1988.

6


