
1

Probabilistic Properties of the Spatial Bloom Filters
and Their Relevance to Cryptographic Protocols

Luca Calderoni, Paolo Palmieri, and Dario Maio, Member, IEEE

Abstract—The classical Bloom filter data structure is a crucial
component of hundreds of cryptographic protocols. It has been
used in privacy preservation and secure computation settings,
often in conjunction with the (somewhat) homomorphic proper-
ties of ciphers such as Paillier’s. In 2014, a new data structure
extending and surpassing the capabilities of the classical Bloom
filter has been proposed. The new primitive, called spatial Bloom
filter (SBF) retains the hash-based membership-query design of
the Bloom filter, but applies it to elements from multiple sets.
Since its introduction, the SBF has been used in the design
of cryptographic protocols for a number of domains, including
location privacy and network security. However, due to the
complex nature of this probabilistic data structure, its properties
had not been fully understood. In this paper we address this gap
in knowledge and we fully explore the probabilistic properties
of the SBF. In doing so, we define a number of metrics (such
as emersion and safeness) useful in determining the parameters
needed to achieve certain characteristics in a filter, including the
false positive probability and inter-set error rate. This will in
turn enable the design of more efficient cryptographic protocols
based on the SBF, opening the way to their practical application
in a number of security and privacy settings.

Index Terms—Spatial Bloom filters, cryptographic protocols

I. INTRODUCTION

BLOOM filters are a probabilistic data structure allowing
membership queries on the elements of a set, proposed by

Burton Howard Bloom in 1970 [1]. A Bloom filter represents a
set in a space-efficient way through the use of hash functions.
The filter built on a set can be queried to test whether an
element is a member of that set: false positive matches are
possible (where an element outside the set is recognized as
being a member of it), but false negatives are not. While
introducing false positives, Bloom filters have a strong space
advantage over other data structures for representing sets.
Moreover, the construction parameters of the filter allow the
false positive probability to be tuned according to the user’s
needs, making Bloom filters suitable for most application
scenarios. In fact, Bloom’s data structure has proved to be

Manuscript received July xx, 2017; revised January xx, 2018; accepted
January xx, 2018. Date of publication Month xx, 2018; date of current
version Month xx, 2018. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. xxxxxx xxxxxx.
(Corresponding author: Luca Calderoni.)

L. Calderoni and D. Maio are with the Department of Computer Science and
Engineering, Università di Bologna, Italy (e-mail: luca.calderoni@unibo.it;
dario.maio@unibo.it).

P. Palmieri is with the Department of Computer Science, University College
Cork, Ireland (e-mail: p.palmieri@cs.ucc.ie). Part of this research work was
carried out while he was with Cranfield University, UK.

This paper has supplementary downloadable material at
http://ieeexplore.ieee.org, provided by the authors. Color versions
of one or more of the figures in this paper are available online at
http://ieeexplore.ieee.org.

Digital Object Identifier

extremely popular in a number of domains, and in particu-
lar in networking and security settings [2]. Another crucial
characteristic of Bloom filters is that the data structure can
be naturally represented as a set of binary values. This, in
turn, allows for further compressibility, but more crucially, it
also makes a number of encryption operations possible. In
particular, the use of (somewhat) homomorphic encryption
schemes such as Paillier [3] allows membership queries to
be performed over an encrypted filter. This property has
been used in a number of set-based cryptographic protocols,
including privacy preserving search [4], private record linage
and intersection [5], and private similarity testing [6] among
others.

Despite its flexibility and applicability, the main limitation
of Bloom filters is their ability to represent only a single set:
whenever computation has to be performed over multiple sets,
each set requires a separate filter. This limitation was recently
overcome by the introduction of the spatial Bloom filter (SBF),
a data structure extending the classical Bloom filter to enable
representation of an unlimited number of sets [7], [8]. The
spatial Bloom filter was initially proposed as part of a location
privacy protocol, and used to represent multiple geographical
areas to be compared privately with the location of a user.
This is the main reason behind the term spatial. However,
it is important to point out that this data structure is not
limited to the location privacy domain, but it is indeed suitable
for any kind of set-based problem. To this end, it could be
conveniently referred to as ’Multi-set Bloom Filter’ or ’Over-
lapping Bloom Filter’, although it is preferable to maintain
its name unaltered for reason of continuity with respect to the
literature and for ease of reference by the scientific community.
The SBF original protocol, based on Paillier’s cryptosystem,
compares positively with existing location-privacy solutions,
as evidenced by the comparative study by Solomon et al [9]:
in particular, the spatial Bloom filter allows for a significant
reduction in memory usage and communication overhead. The
space and communication efficiency of the SBF opened the
way for its application in other domains, including anonymous
routing protocols and the Internet of Things [10]. However,
despite the potential for the spatial Bloom filter to be used
in a number of scenarios, its probabilistic properties have not
been fully studied to date. In particular, the storage of multiple
sets introduces elements of complexity in the determination
of the false positive probability. While the original paper [8]
correctly estimated the probability for an element external to
the sets represented in the filter to be recognized as a member
(the typical false positive case), it did not fully explore the
case of inter-set errors, where elements belonging to a set are
recognized as member of a different one, where both sets are

mailto:luca.calderoni@unibo.it
mailto:dario.maio@unibo.it
mailto:p.palmieri@cs.ucc.ie

2

part of the filter.
In this paper we study in depth the probabilistic properties

of the spatial Bloom filter, and we introduce a number of
novel metrics such as emersion and safeness, that are useful in
determining the characteristics of a filter, both before (a priori)
and after (a posteriori) its construction. The new metrics allow
the construction of filters precisely calibrated to respect user
defined parameters, including the acceptable false positive
probability and error rate. As such, the new metrics will
enable the efficient use of the SBF in security and privacy
cryptographic protocols, reducing space and communication
overhead to the optimal minimum. As part of this work,
we further facilitate SBF adoption by providing a reference
implementation of the data structure (released under LGPL).
The implementation provides experimental validation for the
proposed metrics and the accuracy of the probabilistic model.
Finally, we discuss three different security settings where SBF
can be adopted, and we show how the metrics can be used to
identify the filter characteristics that best fit the requirements
of each case.

II. PRELIMINARIES

Definition 1. We define a Bloom filter B (S) representing the
originating set S = {a1, . . . , an} as the set

B (S) =
⋃

a∈S,h∈H

h(a) , (1)

where H = {h1, . . . , hk} is a set of k hash functions such
that each hi ∈ H : {0, 1}∗ → {1, . . . ,m}, that is, the hash
functions take binary strings as input and output a random
number uniformly chosen in {1, . . . ,m}.

The spatial Bloom filter (SBF) is defined as follows [8]:

Definition 2. Given the originating sets ∆1,∆2, . . . ,∆s to be
represented in the filter, let S̄ be the union set S̄ =

⋃
∆i∈S ∆i

and let S be the set of sets S = {∆1,∆2, . . . ,∆s}. Let O be
the strict total order over S for which ∆i < ∆j for i < j.
Let also H = {h1, . . . , hk} be a set of k hash functions such
that each hi ∈ H : {0, 1}∗ → {1, . . . ,m}, that is, each hash
function in H takes binary strings as input and outputs a
random number uniformly chosen in {1, . . . ,m}. We define
the spatial Bloom filter over (S,O) as the set of couples

B# (S,O) =
⋃
i∈I
〈i,maxLi〉 (2)

where I is the set of all values output by hash functions in H
for elements of S̄

I =
⋃

δ∈S̄,h∈H

h (δ) (3)

and Li is the set of labels l such that:

Li = {l | ∃δ ∈ ∆l,∃h ∈ H : h(δ) = i} . (4)

A spatial Bloom filter B# (S,O) can be represented as a
vector b# composed of m values, where the i-th value

b# [i] =

{
l if 〈i, l〉 ∈ B# (S,O)
0 if 〈i, l〉 6∈ B# (S,O)

[8]. (5)

TABLE I
THE NOTATION COMMONLY USED IN SBF LITERATURE AND THE NEW

SYMBOLS INTRODUCED WITHIN THIS PAPER.

Known symbol Description

E A domain for elements to be mapped inside a SBF
B# (S,O) A spatial Bloom filter

b# The vector representation of the SBF
k The number of hash runs
m The number of cells of the SBF
n The total number of elements to be inserted into the SBF
s The number of originating sets

∆i The i-th originating set
S The set of originating sets {∆1, . . . ,∆s}, |S| = s

S̄ The union set
⋃

∆i∈S
∆i, where |S̄| = n

L The set of set labels {1, . . . , s}
New symbol Description

v# The verification function v# : E → {0, . . . , s}
b#ai The vector representation of an SBF when it reaches the state i
ni The number of members of the i-th set, |∆i| = ni

ci The number of cells in b# containing the value i
ciai The number of cells in b#ai containing the value i (cias = ci)
µi The number of self-collisions observed for the i-th set

FPPi The a priori false positive probability for the i-th set
FPP′i The a posteriori false positive probability for the i-th set
FPRi The false positive rate observed for the i-th set
ISEPi The a priori inter-set error probability for the i-th set
ISEP′i The a posteriori inter-set error probability for the i-th set
ISERi The inter-set errors rate observed for the i-th set
ISEi The number of inter-set errors observed for the i-th set

SAFEP The a priori probability to have ISERi = 0, ∀i ∈ L
SAFEPi The a priori probability for the i-th set to have ISERi = 0

Ωi The emersion of the i-th set

In the following, when referring to a spatial Bloom filter,
we refer to its vector representation b#. Each position of this
one-dimensional array is referred to as a filter cell.

Table I presents the notation commonly used in the spatial
Bloom filter literature. Please note that some of the new
symbols introduced in this paper are included as well, for
easier consultation.

A. SBF construction

A spatial Bloom filter is built as follows [8]. Initially, all
values in b# are set to 0. Then, for each element δ ∈ ∆1

and for each hash function h ∈ H we compute h (δ) = i
and we write 1 (the label of ∆1) at b# [i]. We call this
process the insertion of element δ into the filter. We do
the same for elements belonging to ∆2 (writing the value
2), and we proceed incrementally until all s sets in S have
been encoded in b#. We observe that the ordered construction
process implies that in case of a collision (see below), sets with
lower labels are more likely to be overwritten than sets with
higher label values. No overwriting can happen for elements
of ∆s. We discuss how this affects the filter probabilistic
properties in Section III.

It is important to clarify how collisions (overwrites) happen.
In particular, we note that they occur when a single hash
function produces the same output for two distinct elements
(what is commonly known as a hash collision), but also when
two different hash functions produce the same output for the

3

same element or for two different elements. In all these cases,
the same filter cell is written twice. Throughout this paper
we refer to this phenomenon as cell overwrite, or simply as
collision, indifferently.

In the following, we provide a definition for some concepts
and events related to the filter construction (including two spe-
cific kind of collisions) that had never been formalized in the
SBF literature, but are useful for the study of its probabilistic
properties. First, we define a state in the construction:

Definition 3. Let us consider the spatial Bloom filter b#.
Given i ∈ L, we say the filter is in state i (and we refer to its
vector representation as b#ai) if and only if all the elements of
set ∆i have been inserted into the filter.

Therefore, state 0 (b#a0) represents the empty filter (with all
of its cells set to zero). At the end of the construction process,
the filter is in state s (b#as).

During the filter construction, the insertion of the elements
of set ∆i into the filter causes a number of cells to be set to i.
The exact number depends on the outputs of the hash functions
in the insertion process: if all outputs are different, we say
that no collision has occurred and (k · ni) cells are written.
However, if two (or more) hash outputs are the same, one (or
more) collision has occurred, and the total number of cells
set to i is lower. Collisions can occur during the insertion of
different elements, or even for the same element over different
hash functions. We call self-collisions the overwrite events
occurring over elements of the same set, and we define them
as follows:

Definition 4. Given a filter b#, a self-collision for set ∆i

occurs each time after the first the value i is written on a
same cell during the insertion of the elements of ∆i. We call
µi the total number of self-collisions for set ∆i, occurring
during the transition from the state i − 1 to the state i (that
is, while elements of ∆i are being inserted).

Similarly, overwrite events occurring during the insertion
of a single element (i.e. when two or more different hash
functions address the same cell) are referred to as intra-
element collisions.

B. SBF verification
Let us consider a SBF B# (S,O) built over the sets

∆1, . . . ,∆s such that S̄ =
⋃s
i=1 ∆i. Each set ∆i contains

elements belonging to a generic domain E .
The verification procedure which classifies an element δ ∈ E

as belonging to one of the originating sets (see [7], [8]), may
be formalized using a functional notation as follows:

v# : E → L0

δ 7→ v#(δ)
(6)

where L0 = {0, . . . , s}. This function takes as input a
generic element of E and outputs an integer included between
0 and s. This integer indicates the set to which the element
is supposed to belong to (if the output is > 0), or indicates
that the element does not belong to any of the originating sets
(when the output is 0).

III. PROBABILISTIC PROPERTIES OF THE SPATIAL BLOOM
FILTER

As both Bloom filters and Spatial Bloom Filters are proba-
bilistic data structures by definition, it is crucial to understand
the probabilistic characteristics they possess, and how these
determine their ability to correctly answer set membership
queries. In reality, both data structures display a behavior that
can be deterministic or probabilistic depending on the element
for which membership is queried. By deterministic behavior,
we refer to a membership query that always returns the same
result, based only on the set of elements over which the filter
is built (called the originating set). A probabilistic behavior is
instead displayed when the membership query result depends
on factors other than the originating set, such as the chosen
hash functions and the resulting filter construction. In the case
of a classic Bloom filter, which is built on a single set, it is
possible for an element outside the filter’s originating set to
be wrongly recognized as a member of it (producing a false
positive). This behavior is due to the hash functions colliding
(that is, producing the same output) for different elements, and
therefore its occurrence depends on the chosen set of hashes.
Hence, the filter is non-deterministic (and hence probabilistic)
in replying to queries regarding elements that are not part
of the originating set. An error in the opposite direction
(false negative) is instead impossible: membership queries are
always positively replied for members of the originating set.
For those elements, the filter displays a deterministic behavior.

Bloom filters are well suited for a false positive/false
negative discussion, as they provide binary classification: the
verification function (which computes the result of a mem-
bership query) just determines whether or not the element
provided as input belongs to the filter originating set. Spatial
Bloom filters, on the contrary, are constructed over a number
of (disjoint) originating sets. Thus, the verification process is
to be considered a multinomial classification problem.

When the Spatial Bloom Filter was first introduced [7],
[8], the authors discussed the SBF probabilistic properties
concerning false positives. However, there was no focus on
the difference between the wrong classification of an element
outside the originating sets that is wrongly recognized as
belonging to one; and the wrong classification of a member
of an originating set that is recognized as belonging to a
different one. The a priori (i.e. before construction) false
positive probability that was discussed in the original papers is
in fact based only on the probability for each hash function to
collide, and therefore to point to a position of the filter which
was previously written onto.

Similarly to the classic Bloom filter, the SBF does not
allow for false negatives: a membership query over an element
that is part of the originating sets will always result in a
positive response. However, the element may be classified
as a member of the wrong set. This phenomenon, which is
specific to the SBF, deserves special attention, and a proper
understanding of the probability with which these exchanges
may occur is crucial to enable application of the spatial Bloom
filters. In the following, we therefore study this inter-set error
probability, something that was left unexplored in the existing

4

TABLE II
THE BF AND SBF IN RELATION TO THE PROPOSED ERROR TAXONOMY.

False positives False negatives Inter-set errors

BF Yes No No
SBF Yes No Yes

SBF literature.
In the final part of this work we validate the presented

probabilistic framework with extensive experimentation, by
using the reference implementation of the data structure we
developed as part of this research. This allows us to discuss
not only the expected error probabilities, but also the effective
error rates occurring over actual filters. Specifically, we will
discuss false positives and inter-set errors from both the a
priori and the a posteriori perspective. This concept allow
us to confirm the correctness of our probabilistic model and
the implementation of the data structure. Knowledge of the a
posteriori error rates is crucial for real-world adoption of the
SBF, as these indicate the suitability of a specific filter to a
chosen context.

A final remark is needed with respect to the probabilistic
approach we use in the following. The first probabilistic model
proposed by Bloom [1] and refined by Mullin [11] was proved
to be a lower bound of a more precise probabilistic model
introduced by Christensen [12]. However, the relative error
between the latest proposed model and the classic one is
irrelevant for increasing values of m (specifically, this error
is negligible when m > 1024). As SBFs are designed to store
multiple sets, their application with very low values of m is of
little relevance. Hence, our discussion on SBF’s probabilistic
properties relies on the well known classic model.

A. Error taxonomy

A membership query over a spatial Bloom filter can result
in the following outcomes:
True positive: the element belongs to one of the originating

sets, and is classified as such.
True negative: the element does not belong to any of the

originating sets, and is classified as such.
False positive: the element does not belong to any of the

originating sets, but is classified as belonging to one of
the originating sets.

False negative: the element belongs to one of the originating
sets, but is classified as not belonging to any of the sets.

Inter-set error: the element belongs to one of the originating
sets, but is wrongly classified as belonging to another set.

Table II sums up the general properties of BF and SBF
concerning errors.

We formalize this taxonomy in accordance with the verifi-
cation function introduced in Section II-B. Let us consider the
filter b# and the associated verification function v#. Given
∆i ∈ S, δ ∈ E and i, j, k ∈ L, we can assert that:
True positive: v#(δ) = i, δ ∈ ∆i.
True negative: v#(δ) = 0, δ 6∈ S̄.
False positive: v#(δ) = k, δ 6∈ S̄.
False negative: v#(δ) = 0, δ ∈ ∆i.

Inter-set error: v#(δ) = j, δ ∈ ∆i, i 6= j.

Definition 5. Let us consider a SBF b# and a set N̄ such
that N̄ ⊂ E , S̄ ∩ N̄ = ∅. Assuming we test for membership
each element of N̄ against b#, let FPi be the overall number
of false positives reported for the i-th set. We define the false
positive rate for the set ∆i over the verification set N̄ as:

FPRi =
FPi

|N̄ |
. (7)

Definition 6. Let us consider a SBF b#. Assuming we test
for membership each element of S̄ against b#, let ISEi be
the overall number of inter-set errors reported for the i-th set
(i.e. the number of occurrences for the event v#(δ) = j, δ ∈
∆i, i 6= j). We define the inter-set error rate for the set ∆i

over the construction set S̄ as:

ISERi =
ISEi

|∆i|
. (8)

B. False positives in Bloom filters

Before proceeding to discuss the SBF’s probabilistic prop-
erties, it is useful to recall, for comparison, some key points
concerning false positives in the classic Bloom filter [1]. Let us
consider a Bloom filter composed of m bits (here referred to as
cells for ease of comparison with SBFs) and built using k hash
functions, each returning as output a digest uniformly chosen
within the range [1,m]. Finally, let us consider n members of
a generic set to be inserted into the filter. During the insertion
procedure, the probability for a specific cell to be hit by a
hash digest is 1/m. Hence, the probability for that cell not
to be written is (1− 1/m). Since to complete the insertion
procedure for a single element we need to compute k digests,
the probability for a specific cell not to be hit (and thus written
into) at the end of the whole construction process of the filter
(i.e. when all n elements have been inserted) is:(

1− 1

m

)kn
. (9)

Let us now consider an element which does not belong to the
originating set and let us check for its membership against the
filter. The probability for a non-empty cell to be hit by a hash
digest is:

1−
(

1− 1

m

)kn
. (10)

However, in order for the element to be supposed to belong
to the originating set, all of the k digests have to address non-
empty cells. The probability for such an event to occur is:(

1−
(

1− 1

m

)kn)k
. (11)

This equation thus represents the a priori false positive prob-
ability for a Bloom filter.

It is important to point out that, after the construction
procedure is completed, the exact number of non-empty cells
is known. We can then infer a more precise probability
concerning false positive events. Specifically, let us suppose
the filter has c cells set to 1 (i.e. non-empty). When we check

5

for the membership of an element, the probability for all of
the k hashes to output digests addressing non-empty cells is:(c

m

)k
(12)

which we may refer to as the a posteriori false positive
probability for a specific Bloom filter.

C. False positives in spatial Bloom filters

Spatial Bloom filters feature several originating sets. Given∣∣S̄∣∣ = n, the probability to experience a false positive when
we classify an element against a SBF equals the one which
can be derived for a classic BF built over S̄, as long as the
values m and k are the same for the two filters.

However, as shown in [7], [8], the false positive probability
may be split into several set-specific probabilities. As each set
∆i contains ni = |∆i| members, it follows that:

FPPs =

(
1−

(
1− 1

m

)kns
)k

(13)

FPPs−1 =

(
1−

(
1− 1

m

)k(ns+ns−1)
)k
− FPPs (14)

. . .

FPP1 =

(
1−

(
1− 1

m

)kn)k
− FPPs − · · · − FPP2 . (15)

In general, the a priori false positive probability for the i-th
set is:

FPPi =

(
1−

(
1− 1

m

)k∑s
j=i nj

)k
−

s∑
j=i+1

FPPj . (16)

Similarly to the Bloom filter, when the SBF construction is
completed, we may count, for each set, the number of cells
containing the set label. These values allow us to perform
a more precise probabilistic estimate of the set-specific false
positives for the given filter. Specifically, let c be the total num-
ber of non-zero cells and let ci be the number of cells which
hold the value i. The a posteriori false positive probability for
each set can be formalized as follows:

FPP′s =
(cs
m

)k
(17)

FPP′s−1 =

(
cs + cs−1

m

)k
− FPP′s (18)

. . .

FPP′1 =
(c
m

)k
− FPP′s − · · · − FPP′2 . (19)

In general, for the i-th set:

FPP′i =

(∑s
j=i cj

m

)k
−

s∑
j=i+1

FPP′j . (20)

D. False negatives

Both Bloom filters and spatial Bloom filters do not admit
false negatives. This property can be intuitively derived from
their construction process.

Proposition 1. Let us consider the filter b# and the associated
verification function v#. Given i ∈ L, ∀δ ∈ ∆i, v

#(δ) 6= 0.

Proof. Since δ ∈ ∆i, this element was processed by the k hash
functions during the construction process of b#. Depending
on collisions, this process resulted in a number of cells ≥ 1
and ≤ k set to i. As the set of hashes to be used during
the construction process coincides with the one to be used
during the verification process, checking for the element δ
will head to the same cells which were written during the
construction phase. Hence, the only way to realize v#(δ) = 0
would be if one of the elements inserted into the filter after δ
would produce an overwrite of one of the aforementioned cells
with the value 0. However, per the SBF definition, elements
belonging to sets ∆i, . . . ,∆s may only produce overwrites of
value j ∈ {i, . . . , s}, from which the assertion follows.

E. Inter-set errors

One of the main features of SBFs consists in the overwriting
rule used for collision handling during the construction pro-
cess. Following this principle, it is possible for an originating
set to have the cells representing it (that is, the cells containing
the set label) overwritten with greater label values. This event
occurs each time an element belonging to a set ∆j given as
input to a hash function results in an output digest pointing to
a cell containing a lower value i < j.

This is why, during the verification phase, it is possible for
an element belonging to the set ∆i to be wrongly classified
as belonging to a different set ∆j , only if j > i. In order for
this exchange to occur, the element needs to be particularly
“unlucky”: specifically, each one of the cells representing it in
the filter should be overwritten.

The expected frequency of these events, here referred to
as inter-set errors (ISE), may be formalized as an a priori
probability before the filter construction takes place. After the
filter has been constructed, instead, we are able to compute
the exact rate of inter-set errors by means of a self-check,
i.e. testing all of the members of S̄ against the filter and
collecting the inter-set errors for each set ∆i on occurrence
(see Definition 6 for reference).

In the following, we formalize the overwriting process from
a probabilistic point of view and we discuss the a priori inter-
set error probability (ISEP) and the a posteriori inter-set error
probability (ISEP′) for each set of a SBF.

1) Cells overwriting: Let us suppose we want to construct
a SBF starting from s originating sets ∆1, . . . ,∆s. We want
to predict, for each set, how many cells will represent it when
the filter reaches its final state s. In other words, we want to
compute, for each set ∆i, an estimate of the number cias of
cells set to i in b#as (by convention, cias = ci).

For ease of understandability, let us recall that the filter is
built following the strict total order O: starting from the state 0,
each set is processed in ascending order until the filter reaches

6

the state s. Specifically, when the filter reaches the i-th state,
b#ai will contain the maximum number of cells set to i. As each
element is processed by k hash functions, members of ∆i may
produce at most kni distinct cells set to i, depending on the
number of self-collisions (see Definition 4 for reference).

During the insertion phase of the elements of ∆i, each cell
has a probability of 1/m to be hit (and thus set to i) and,
consequently, a probability of (1− 1/m) not to be hit. Hence,
the probability for a cell not to be hit when the filter reaches
the i-th state is: (

1− 1

m

)kni

. (21)

On the contrary, the probability to contain the value i is

1−
(

1− 1

m

)kni

. (22)

Therefore, since the filter is composed of m cells, the
expected value of cells set to i in b#ai is:

E[ciai] = m

(
1−

(
1− 1

m

)kni
)

. (23)

After the filter reaches the state i, the construction phase
goes forth until all the members of the remaining sets
∆i+1, . . . ,∆s are processed. These elements are the only ones
which may produce overwrites upon the cells set to i. We
call these overwrite events collisions. Let us define the total
number of such elements as

nFILL
i =

s∑
j=i+1

nj . (24)

Hence, following the same principle discussed above, the
probability for a cell in b#as not to be set to a value j > i is:(

1− 1

m

)knFILL
i

. (25)

We conclude that the expected number of cells set to i when
the construction process is completed (i.e. in b#as) is:

E[cias] = m

(
1−

(
1− 1

m

)kni
)(

1− 1

m

)knFILL
i

. (26)

2) Error probability: Having analyzed the issue of over-
writes (collisions), we can proceed to discuss the inter-set
error probability. It is important to clarify that, in order for
an element δ ∈ ∆i to be wrongly classified as a member of
a different set, all of its corresponding cells (which originally
contained the value i) need to be overwritten by a value j,
where i < j ≤ s.

Hence, the probability for such an event to occur may
be discussed as the probability for a member of the set
∆i to “disappear” from the filter, that is, to have all of its
representative cells overwritten when the filter reaches state s.
An example of such an event is provided in Figure 1.

b#a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

δ

b#a1 1 0 1 0 1 0 1 0 0 1 0 0 1 0

. . .

b#a3 2 2 1 0 3 0 1 2 3 3 0 2 1 3

v# (δ) = 2

Fig. 1. A simple example of an inter-set error for a generic element δ (here
we assume k = 3 and s = 3). At the end of the construction process, the
three cells representing the element were overwritten. Thus, the verification
function outputs a wrong label when it is queried for δ’s membership.

For simplicity, let us suppose that each member of ∆i

is represented by exactly k cells in b#ai, that is, the k hash
functions used to map each element have not been affected by
intra-element collisions. This assumption is reasonable when
k � m, as in this case it is relatively rare to experience a
collision among k hash digests over m cells. The probability
for a cell not to be set to a value j (i < j ≤ s) when the filter
reaches the state s is proposed in (25). Hence, the probability
for a cell in b#as to contain such a value is

1−
(

1− 1

m

)knFILL
i

. (27)

Therefore, the probability for an element of ∆i to have all
of its k corresponding cells overwritten in b#as is

ISEPi =

(
1−

(
1− 1

m

)knFILL
i

)k
. (28)

It follows that the expected value of inter-set errors for the
set ∆i is

E[ISEi] = ni

(
1−

(
1− 1

m

)knFILL
i

)k
. (29)

Although at the end of the construction process we may
compute an exact inter-set error rate via a self-check upon the
elements of each set, an a posteriori inter-set error probability
may be derived as well. Specifically, when the filter reaches the
state i, there are ciai = kni−µi cells set to i inside the filter.
Hence, when a member of ∆i is checked for membership, each
hash function will hit one among these cells. When the filter
reaches the state s some of the aforementioned cells may be
overwritten. In order for an element of ∆i to be misrecognized,
we must never hit a cell set to i within k trials, i.e. we must
hit overwritten cells which were previously set to i for each
of the k hash outputs. As when the filter reaches the state s it
contains ci ≤ kni − µi cells set to i, the probability for this
event to occur is:

ISEP′i =

(
(kni − µi)− ci

kni − µi

)k
. (30)

7

The denominator represents the overall number of cells a
hash may point to when it is applied to an element of ∆i

(as these are the cells which were written at the state i);
while the numerator expresses the number of cells among
the aforementioned ones which were overwritten (as ci is the
number of cells set to i at the end of the construction process).

IV. EMERSION

We define, for each originating set of a SBF, a value
quantifying the degree of representation for that set: the
resulting metric is a synthetic indicator expressing how much
of the set “emerges” when the filter reaches its final state s. As
pointed out in Section III, each set ∆i reaches its maximum
degree of representation when the filter reaches the state i. At
this stage, the number of cells representing ∆i (i.e. set to i)
is kni−µi. We achieve the metric by comparing this value to
the number of cells representing the set when the filter reaches
the state s (ci):

Definition 7. Given a filter b#as, we define the emersion of
each originating set ∆i (and we refer to it as Ωi) as:

Ωi =
cias
ciai

=
ci

kni − µi
. (31)

The emersion of a set is included in the range [0, 1]. Clearly,
if no cell among the kni−µi is overwritten, the set ∆i would
emerge completely. In this case ci = kni−µi and thus Ωi = 1.
The opposite condition is reached when all these cells are
overwritten. In this case the set is completely “submerged”:
ci = 0 and Ωi = 0.

Before the filter construction takes place, it is possible to
calculate an expected value for the emersion of the i-th set
considering the expected value of cells set to i in b#as and the
one of those set to i in b#ai. Following (23) and (26) it is easy
to derive:

E[Ωi] =
E[cias]

E[ciai]
=

(
1− 1

m

)knFILL
i

. (32)

Having defined the emersion of a set, it is possible to express
some of the above metrics as a function of the set’s emersion.
For instance, it is easy to note in relation to (28) and (29) that:

ISEPi = (1− E[Ωi])
k
, (33)

and E[ISEi] = ni (1− E[Ωi])
k
. (34)

Again, let us consider the a posteriori probability provided
by (30). If we express it as (1− ci/ (kni − µi))k, it is
immediate to prove that

ISEP′i = (1− Ωi)
k
. (35)

Proposition 2. Let us consider the filter b#as and the associated
verification function v#. Given Ωi = 1, ∀δ ∈ ∆i, v

#(δ) = i.

Proof. We already proved that ∀δ ∈ ∆i, v
#(δ) 6= 0. Hence,

v#(δ) 6= i can only occur if the element δ is subject to an
inter-set error. However, as Ωi = 1, ci = kni − µi, i.e., none
of the cells related to ∆i was overwritten. Hence, when we

test δ for membership, the hash functions will address only
cells set to i.

Proposition 3. Let us consider the filter b#as and the associated
verification function v#. Given j ∈ L and Ωi = 0, ∀δ ∈ ∆i,
v#(δ) = j, j > i.

Proof. The statement indicates that when a set has emersion
equal to 0, all of its elements are wrongly recognized as
belonging to a different set. The only way v#(δ) = i can
occur is if the hash functions address at least one cell set to
i. However, as Ωi = 0, ci = 0, i.e., no cell in b#as is set to i.
Therefore, as we already proved that ∀δ ∈ ∆i it is not possible
to address cells set to 0, when we test δ for membership, the
hash functions will address only cells set to j, where j > i
by SBF definition.

From (35), it follows that, when Ωi = 1, ISEP′i = (1−1)k =
0 and, on the contrary, if Ωi = 0, ISEP′i = (1−0)k = 1. Again,
following (20), we can state that when Ωi = 0, FPP′i = 0. In
fact, as ci = 0:

FPP′i =
(

0+ci+1+···+cs
m

)k
− FPP′i+1 − · · · − FPP′s , (36)

while

FPP′i+1 =
(
ci+1+···+cs

m

)k
− FPP′i+2 − · · · − FPP′s , (37)

hence

FPP′i =
(
ci+1+···+cs

m

)k
−
(
ci+1+···+cs

m

)k
+ FPP′i+2 + . . .

+ FPP′s − FPP′i+2 − · · · − FPP′s = 0 .
(38)

We can conclude noting that, when a set is completely
emerged, there is no chance for its elements to be wrongly
assigned to a different set:

Ωi = 1 =⇒ ISEP′i = 0, ISEi = 0, ISERi = 0 . (39)

Conversely, when a set is completely submerged, its elements
will always be subject to inter-set errors:

Ωi = 0 =⇒ ISEP′i = 1, ISEi = ni, ISERi = 1 . (40)

Moreover, it is easy to derive from Proposition 3 that, when
a set is completely submerged, it is impossible to report false
positives on that specific set as well:

Ωi = 0 =⇒ FPP′i = 0, FPRi = 0 . (41)

Again, it is important to note that the last set to be processed
during the filter construction (∆s) features some interesting
properties.

Proposition 4. Let us consider the filter b#as and the associated
verification function v#. Then, ∀δ ∈ ∆s, v

#(δ) = s.

Proof. Following Definition 7, it is evident that Ωs =
csas/csas = 1. Hence, the assertion may be derived directly
from Proposition 2.

8

Again, we may notice that, as nFILL
s = 0,

ISEPs = (1− (1− 1/m)0)k = 0 . (42)

It follows that the set ∆s is never affected by inter-set errors.
As a final consideration, we briefly discuss the emersion

of single elements. Each element of a set ∆i reaches its
maximum degree of representation when the filter reaches the
state i. At this stage, it is represented by k cells, minus the
number of intra-element collisions (see Section II-A). For the
j-th element of ∆i, this number of cells may be represented as
cijai. Hence, the emersion of a single element may be defined
as:

ωij =
cijas
cijai

. (43)

In order to recognize a specific element as belonging to the
proper set, it is sufficient that one of the cells related to that
element is not overwritten. The only remarkable case occurs
when all these cells are overwritten, i.e. when ωij = 0. This
condition leads to an inter-set error, which is discussed in the
paper in Section III-E. We also note that when an element is
checked for membership, it is not possible to discern a false
positive in a element-specific fashion. False positives are in
fact related to sets, and their probability depends on the overall
number of labels (representing the set) stored in the filter at
the end of its construction. This is why emersion is discussed
on a set basis in this context.

V. SAFENESS

In certain application settings (as discussed in Section VIII)
the presence of inter-set errors may discourage usage of spatial
Bloom filters. It is thus important to understand how it is
possible to build filters that are not subject to these errors.

Definition 8. Given a filter b#as, we say that the originating
set ∆i is safe when ISERi = 0.

Thus, a safe set is never affected by inter-set errors for
the specific filter b#as. We note that, following Proposition 2,
when Ωi = 1 the set ∆i is safe and, similarly, following
Proposition 4, the set ∆s is always safe. Within the context
of the probabilistic model proposed in Section III-E, we can
calculate the a priori probability for a specific set to be safe
at the end of the construction process. Let us consider (28)
which represents the probability for a specific member of ∆i

to be affected by an inter-set error. Hence, 1 − ISEPi is the
probability for that element not to be affected by this kind
of error. It follows that, the probability for all of the ∆i’s
members not to be affected by inter-set errors is

SAFEPi = (1− ISEPi)
ni (44)

which represents in turn the probability for that set to be
safe. Now that we know this set-specific probability, we can
discuss the safeness property concerning the entire filter.

Definition 9. A filter b#as is safe when ∀i ∈ L, ISERi = 0.

Thus, we consider a SBF to be safe when it is not affected
by inter-set errors for any of the originating sets. We conclude

by calculating the a priori probability for a SBF to be safe.
In order to reach the safeness condition, each of the filter’s
originating sets needs to be safe. Hence, as we can consider
these events as independent, we say that:

SAFEP =

s∏
i=1

(1− ISEPi)
ni . (45)

This is an important result as this probability enables us
to estimate how many times, on average, we need to build a
filter using different (random) hash functions before achieving
a version of it that is safe. In practice, as we discuss in Section
VI, hash functions are combined with a random hash salt dur-
ing the construction process in the proposed implementation.
This makes it straightforward to perform several trials upon
the same construction set S̄ until a safe version of the filter is
produced.

VI. IMPLEMENTATION AND EXPERIMENTS

We provide a reference implementation of the spatial Bloom
filter data structure, including the original building and query-
ing algorithms as well as functions for the calculation of
the novel probabilistic metrics proposed in this paper. The
implementation is available both in C++ and Python, as a
library providing the SBF class, and is released under the
Lesser General Public License (LGPL). The latest version of
the library can be found on GitHub:
https://github.com/spatialbloomfilter/.

TABLE III
DATASETS USED IN THE EXPERIMENTS.

8-bit datasets Elements (n) Sets (s) Elem. allocation, number (ni)

area-element-unif 65 280 255 Linear, 256

area-element-lindec 65 280 255 Decremental, 510, . . . , 2

area-element-lininc 65 280 255 Incremental, 2, . . . , 510

area-element-rand 65 280 255 Random, varies in [209, 298]

non-elements 500 000 - -

8-bit-large datasets Elements (n) Sets (s) Elem. allocation, number (ni)

area-element-unif 16 776 960 255 Linear, 65 792

16-bit datasets Elements (n) Sets (s) Elem. allocation, number (ni)

area-element-unif 16 776 960 65 535 Linear, 256

area-element-lindec 16 776 960 65 535 Decremental, 510, . . . , 2

area-element-lininc 16 776 960 65 535 Incremental, 2, . . . , 510

area-element-rand 16 776 960 65 535 Random, varies in [191, 324]

non-elements 14 097 123 - -

The two implementations are equivalent in terms of capa-
bilities, and have been extensively tested in order to ensure
they both return the same expected results. However, the C++
implementation is optimized for speed of execution (perfor-
mance data are available in the supplemental material, see the
Appendix for reference), while the Python library provides
an easier interface for scripting and plot generation. For the
latter purpose, the Python implementation is accompanied by
a further sbfplot library, providing a number of function-
plotting routines for the probabilistic metrics presented in this
paper. Both the C++ and the Python implementations use an
efficient memory allocation mechanism, adaptively reducing
or increasing the memory required to store the filter (in terms

https://github.com/spatialbloomfilter/

9

0 50 100 150 200 250
Set

0.5

0.6

0.7

0.8

0.9

1.0

Em
er

sio
n

Emersion (area-element-unif.csv)
Expected emersion
Emersion

(a) unif

0 50 100 150 200 250
Set

0.6

0.7

0.8

0.9

1.0

Em
er

sio
n

Emersion (area-element-lindec.csv)
Expected emersion
Emersion

(b) lindec

0 50 100 150 200 250
Set

0.5

0.6

0.7

0.8

0.9

1.0

Em
er

sio
n

Emersion (area-element-lininc.csv)
Expected emersion
Emersion

(c) lininc

Fig. 2. Emersion for random, decremental and incremental datasets (8-bit). As expected, the lindec dataset features the highest emersion over most sets.

0 50 100 150 200 250
Set

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

0.000016

FP
P

False positive probability (area-element-unif.csv)
A priori FPP
FPP
FPR

(a) unif

0 50 100 150 200 250
Set

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035

FP
P

False positive probability (area-element-lindec.csv)
A priori FPP
FPP
FPR

(b) lindec

0 50 100 150 200 250
Set

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

FP
P

False positive probability (area-element-lininc.csv)
A priori FPP
FPP
FPR

(c) lininc

Fig. 3. False positive probabilities for the random, decremental and incremental datasets, in the 8-bit version. FPR is the actual false positive rate for the
constructed filters, obtained querying each SBFs with 500 000 random elements (contained in the non-elements dataset) external to the filter.

of number of bytes per cell) depending on the number of sets.
Both implementations also provide a choice of hash standards,
including MD4, MD5, and SHA-11. Different hash functions
are derived from the same hash standard by using a random
hash salt.

In order to test the implementation, we generated a number
of test datasets (also available on GitHub). The datasets are
composed by a number of element-set tuples, where elements
are randomly generated and the sets are assigned to form
datasets of specific geometry (Table III). In particular, we
used unif datasets, where elements are equally distributed
among sets, lindec datasets, where elements are assigned
to sets following a linearly decreasing distribution function,
lininc datasets, which follow a linearly increasing distri-
bution instead, and rand datasets, where the elements are
assigned to sets randomly. For each distribution, we produced a
smaller, 8-bit version of the dataset (where 8-bit is the memory
space used to store the set labels) with 255 sets and 65 280
total elements, as well as a larger 16-bit version with 65 535
sets and 16 776 960 elements. The different geometry of the
datasets enabled the testing of different scenarios and how the
false positive and error probabilities vary as a result. For the
properties of the SBF, it is evident that a linearly decremental

1It is important to note here that the security of the hash standard is not a
concern in this setting, as the hash functions only serve a mapping purpose.
We can therefore safely use MD5, for instance, even though it is subject
to known attacks. For the same reason, non-cryptographic uniform mapping
functions could be used as an alternative.

distribution is more advantageous, for example, than a linearly
incremental one, as in the former less elements will be member
of sets with the highest priority, and therefore the highest
overwriting capacity. Each datasets was then used to construct
a corresponding filter, enabling a comparison between the
expected probabilistic characteristics and the ones featured by
an actual filter. The filters were created using optimal values
of m and k, with respect to the overall number of elements
contained in the dataset. Specifically, m = 220 and k = 10 for
8-bit datasets; and m = 228 and k = 10 for the 16-bit and 8-
bit-large. The MD5 hash standard was used, applying different
hash salts for each function. The same salts were used for all
datasets.

We analyze the results of the experiments in Section VII.
While we include the function plots that are most useful for
discussion in this paper, the entire set of plots is available as
supplemental material (see the Appendix).

VII. ANALYSIS

On the basis of the experiments described above, in the fol-
lowing we analyze how the spatial Bloom filter data structure
performs, with respect to the probabilistic features presented
in this paper. We discuss each characteristic separately.

A. Number of cells

For each 8-bit dataset we computed the number of expected
cells per set according to (26). Then, we compared this value

10

with the real number of cells representing the set at the
end of the filter construction (ci). The results show that the
effective number of cells follows closely the expected value.
Intuitively, the higher the set label, the closer the number of
cells is to the maximum value (kni−µi), as overwrite events
decrease. Graphs showing the number of cells are provided as
supplemental material (see the Appendix) for brevity.

B. Emersion

Figure 2 shows how the emersion (31) observed for each
set compares to the expected emersion, defined in (32) (for
brevity, the random dataset is included as supplemental mate-
rial). The results indicate that the expected emersion correctly
predicts the a posteriori value. In general, higher set labels
correspond to a higher emersion value, as could be intuitively
expected. The degree to which this phenomenon is displayed
for different datasets depends on the number of elements per
set: where most elements belong to lower labeled sets, the
emersion grows more rapidly, as in the case of the linear
decremental distribution. This can be easily explained with the
fact that the probability of overwrites depends on the number
of elements that belong to sets with higher labels.

C. False positives

The false positive probability is one of the most important
characteristics in a spatial Bloom filter. While the absolute
value of this probability depends on the size of the filter
m and the number of hash functions k, it is interesting to
study how the probability varies on a set-by-set basis for the
different datasets, when m and k are kept constant. Figure 3
shows that the lindec setting is the one which preserves the
highest number of sets from false positive events, while at the
same time also featuring the highest false positive probability
among the datasets. The lininc dataset deserves attention
as well: as we may see, the curve has a concave part with
a maximum value around the 75-th set. This behavior is due
to the specific distribution of elements across sets. In fact,
the first originating sets have few members and thus, they
have few cells representing them in the filter. This is why the
false positive probability stays low even if these sets should
be the ones most affected by false positives, due to their low
labels. We can say that in this part of the graph the number
of elements is more prominent in influencing the probability
than the set label. When we reach the maximum, the value
of the set label becomes predominant in determining the FPP,
and the false positive probability starts to decrease.

The charts compare the a priori false positive probability
(16) with the a posteriori one (20), showing the correctness
of the proposed model, as the values substantially coincide.
The false positive rate (7) follows the expected trend as well.

D. Inter-set errors

While false positives also appear in Bloom filters, the
inter-set error phenomenon is characteristic of spatial Bloom
filters. Similarly to the case of FPP, the experiments provide
a comparison between the a priori inter-set error probability

(28) with the a posteriori one (30). The the effective error rate
(8) was obtained after the filter construction by performing
membership queries for all elements in the originating sets.
These quantities are plotted in Figure 4, which evidences the
correctness of the inter-set error probabilistic model. As could
be expected, the last sets are the most preserved from inter-set
errors events.

0 50 100 150 200 250
Set

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

IS
EP

Inter-set errors (datasets/area-element-unif.csv)
A priori ISEP
ISEP
ISER

Fig. 4. The inter-set errors for the 8-bit large unif dataset. ISER is the
actual inter-set error rate observed on the constructed filter.

A final remark: in this case, the set that best displays the
inter-set error behavior is the 8-bit large uniform dataset,
which contains 65 792 elements per set. This is significantly
higher than the number of members per set of the standard
8-bit datasets, which has 256 elements per set. In the latter,
because of the reduced number of elements, a single inter-set
error alters significantly the ISER for the corresponding set,
reducing the statistical significance and resulting in apparently
unexpected peaks in the chart. The chart is available as part
of the supplemental material (see the Appendix).

E. Safeness

In conclusion, we discuss the probability for each set to be
safe, defined in (44). The results are proposed in Figure 5.

0 50 100 150 200 250
Set

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

SA
FE

P

A priori safeness probability

unif
lindec
lininc
rand

Fig. 5. The safeness probability for the 4 test datasets (8-bit).

As predictable, the lindec setting is the one where the
highest number of sets are more likely to be safe, while the
lininc features a lower variance across sets. Similarly to

11

the false positives case (see Section VII-C), the lininc
setting produces a convex region in the SAFEP curve. This
phenomenon depends on the specific element distribution:
the first sets have few elements, hence, their chances to be
affected by inter-set errors are few as well, despite their
disadvantageous position in the construction order. When we
reach the minimum, the set label becomes prominent over the
element distribution, and SAFEP increases. Discussion of the
overall filter safeness is postponed to Section VIII-B, where we
discuss a specific context where this property is considerably
meaningful.

VIII. RELEVANCE TO SECURITY PROTOCOLS

The spatial Bloom filter is an efficient data structure, that
has the potential to become a crucial building block in several
of the cryptographic protocols that currently feature the classic
Bloom filter. Adoption of the SBF, through the reduction in
the number of filters and the aggregation of cryptographic
operations can increase both memory and communication
efficiency of the constructions, while decreasing the computa-
tional burden, as exemplified by the location privacy case [9].
However, this is possible only when the optimal parameters
for the filter can be selected. The probabilistic metrics we
propose in this paper provide crucial tools in this direction.
In the following, we discuss three relevant security scenarios,
in order to demonstrate how metrics such as emersion and
safeness can be used to construct optimal filters for each
context: as each scenario is different, the filter characteristics
must be tuned to adapt to the probabilistic properties (false
positive and error probabilities) required in each setting.

A. Location privacy and monitoring of critical areas

Spatial Bloom filters were first proposed in the context of
location privacy, and have since been used in a number of
related protocols [9]. In particular, the SBF data structure can
be used to store geographical information of sensitive areas
or points of interests by providers of location-based services.
A filter encrypted with a homomorphic encryption scheme
can provide two-sided privacy protection: the provider can
maintain information on the critical areas hidden, while users
can be offered the guarantee that their location is disclosed
only when inside one of these predefined areas [7].

In this context, the filter would be built over geographical
positions considered of interest, classified into different sets.
The different sets can also be used to encode the distance from
a point of interest, for example by using concentric areas, with
the set label increasing with vicinity to the point of interest. In
this setting, a false positive or an inter-set error reported for an
outer area would have less impact than the same error reported
for the central region. Therefore, the construction parameters
of the filter should be chosen to minimize the inter-set error
probability and false positive probability, in particular for
higher-labeled sets. As shown in Figures 3 and 4, the last sets
are naturally the most preserved from inter-set errors and false-
positives, especially in the linear decremental environment.
This dataset exemplifies the discussed scenario effectively, as
for concentric areas, set size decreases for inner sets. Thus, the

highest label should be used for the sets covering the central
region, while marking the outermost (or least significant) area
with label 1. Finally, it is important to note that the central
region (highest label) is always safe, i.e. it is never affected
by inter-set errors (see Proposition 4 for reference).

B. (Anonymous) network routing
Bloom filters, and more recently the SBF have been used

in private routing protocols [10]. In this context, the filters are
used to identify the correct network (or in the case of Tor
like protocols, the correct relay) to which the current routing
node needs to forward the traffic. In particular, filters map
the network addresses of the nodes of the network as well
as the subnetwork they belong to. A SBF can be used to
store this information efficiently: the network addresses are the
elements to be inserted into the filter, and their corresponding
subnetworks are the sets. An encrypted filter can be used
to preserve the privacy of the traffic destination: the use of
partially homomorphic encryption will enable a routing node
to determine correctly the needed routing information (the
destination network) without disclosure of the identity of the
destination node.

In this setting, it is crucial to avoid inter-set errors: in fact,
if querying the filter with the address of a node results in the
the wrong subnetwork, the node becomes unreachable. False
positives, to the contrary, are not relevant in this scenario:
packets addressed to unknown nodes will always be discarded
eventually. Therefore, a protocol based on spatial Bloom filters
will need to minimize or avoid altogether inter-set errors, and
therefore maximize the SAFEP; with the liberty of ignoring
even high false positive probability values. As only the actual
(a posteriori) safeness is relevant, and in order to minimize
the filter size and hence increase the efficiency, the filter
construction can be iterated until a safe SBF is returned (see
Section V for reference). In Table IV we show the probability
to obtain a safe SBF as the size of the filter m varies. For a
fixed overall number of elements and number of sets, members
distribution among different sets does not affect significantly
the safeness probability. For each of the listed datasets, a value
of m = 221 is sufficient to reach a probability near 1 to
build a safe filter. Using the iteration strategy described above,
a significantly smaller m = 220 filter will require roughly
32 iterations on average to produce a safe version. For the
inter-network routing scenarios, the randomly assigned dataset
rand is arguably the most fitting test.

TABLE IV
THE SAFENESS PROBABILITY OF A FILTER IN RELATION TO ITS SIZE.

8-bit datasets (m = 220) (m = 221) (m = 222) (m = 223)

area-element-unif 0.03131 0.98764 0.99998 1.00000

area-element-lindec 0.03292 0.98784 0.99998 1.00000

area-element-lininc 0.03062 0.98754 0.99998 1.00000

area-element-rand 0.03131 0.98764 0.99998 1.00000

C. Border controls
Border controls are increasingly relevant as both terrorist

episodes and migration flows grow in frequency and size

12

respectively. Since electronic Machine-Readable Travel Doc-
uments (eMRTD) were introduced and e-Passport issuance
specifications were outlined by International Civil Aviation
Organization (ICAO) [13], the automated inspection procedure
is one of the most critical elements concerning border controls,
as it was designed to enhance the inspection quality (thanks
to a number of security protocols aimed at protecting the chip
from data tampering or counterfeiting) while speeding up the
border outflow.

Similarly to the classic Bloom filter, which has been suc-
cessfully used within this domain for biometric recognition
[14], SBF might be used to enhance border security through
a privacy-preserving partition of people among several sets
representing the associated level of risk. Lists of people
(uniquely identified by e-Passport numbers) deemed to require
additional border attention by national authorities can be stored
into an SBF, with the risk level representing the SBF set
label. During automated passport checks (which ensure the
passport is authentic and belongs to the bearer) border officers
may be advised to perform an in-depth inspection on specific
individuals, depending on the risk level returned by the SBF.
SBF encryption can preserve the privacy of the individuals,
while homomorphic comparison can allow sharing of the lists
between different countries.

This scenario is characterized by a few originating sets (the
risk classes) and a lot of elements per set (individuals to be
subject to additional checks) similarly to the case represented
by the 8-bit large dataset. In this case, the SBF should be
constructed preserving the most risky classes (i.e. assigning
them an higher set label), following a linearly decremental
distribution of members across sets, and focusing on false
positives. In fact, border controls are often performed in a
crowded environment and should not be slowed down by a
mass of useless in-depth inspections caused by false positives.
Inter-set errors are meaningful but not so much problematic
here, as they can occur only in one direction: a risky person
may be exchanged with a more risky one. The opposite
condition can never occur (see Section III-E for reference).

IX. CONCLUSION

In this paper we propose a comprehensive study of the
probabilistic properties of spatial Bloom filters, and we in-
troduce several novel metrics that provide an immediate un-
derstanding of the characteristics of a filter, thus facilitating
SBF understanding and usage. Each of the discussed properties
and metrics is supported by extensive experimental evidence,
obtained using the SBF implementation we propose as part of
this work. Two libraries implementing the data structure are
provided, in C++ and Python, released under LGPL terms. The
presented results prove the correctness of the proposed prob-
abilistic model and will enable both the scientific community
and industry to embed SBF in a number of privacy and security
settings, as discussed in the final part of this work.

APPENDIX
SUPPLEMENTAL MATERIAL

For brevity, only some of the graphs plotting the experi-
mental results are included here. The comprehensive set of

charts for all datasets in Table III is provided as supplemental
material, available online at: https://git.io/v73lY.

ACKNOWLEDGMENT

The authors would like to thank Fabrizio Caselli for insight-
ful discussions on the subject.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] S. Geravand and M. Ahmadi, “Bloom filter applications in network
security: A state-of-the-art survey,” Computer Networks, vol. 57, no. 18,
pp. 4047–4064, 2013.

[3] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology - EUROCRYPT ’99, Interna-
tional Conference on the Theory and Application of Cryptographic Tech-
niques, Proceeding, ser. Lecture Notes in Computer Science, J. Stern,
Ed., vol. 1592. Springer, 1999, pp. 223–238.

[4] S. M. Bellovin and W. R. Cheswick, “Privacy-enhanced searches using
encrypted bloom filters,” IACR Cryptology ePrint Archive, vol. 2004,
p. 22, 2004.

[5] R. Schnell, T. Bachteler, and J. Reiher, “Privacy-preserving record
linkage using bloom filters,” BMC Med. Inf. & Decision Making, vol. 9,
p. 41, 2009.

[6] N. Zeilemaker, Z. Erkin, P. Palmieri, and J. A. Pouwelse, “Building a
privacy-preserving semantic overlay for peer-to-peer networks,” in 2013
IEEE International Workshop on Information Forensics and Security,
WIFS 2013. IEEE, 2013, pp. 79–84.

[7] P. Palmieri, L. Calderoni, and D. Maio, “Spatial bloom filters: Enabling
privacy in location-aware applications,” in Information Security and
Cryptology - 10th International Conference, Inscrypt 2014, Revised
Selected Papers, ser. Lecture Notes in Computer Science, D. Lin,
M. Yung, and J. Zhou, Eds., vol. 8957. Springer, 2014, pp. 16–36.

[8] L. Calderoni, P. Palmieri, and D. Maio, “Location privacy without
mutual trust: The spatial bloom filter,” Computer Communications,
vol. 68, pp. 4–16, 2015.

[9] M. G. Solomon, V. S. Sunderam, L. Xiong, and M. Li, “Enabling mu-
tually private location proximity services in smart cities: A comparative
assessment,” in IEEE International Smart Cities Conference, ISC2 2016.
IEEE, 2016, pp. 1–8.

[10] P. Palmieri, L. Calderoni, and D. Maio, “Private inter-network routing
for wireless sensor networks and the internet of things,” in Proceedings
of the Computing Frontiers Conference, CF 2017. ACM, 2017, pp.
396–401.

[11] J. K. Mullin, “A second look at bloom filters,” Commun. ACM, vol. 26,
no. 8, pp. 570–571, 1983.

[12] K. J. Christensen, A. Roginsky, and M. Jimeno, “A new analysis of the
false positive rate of a bloom filter,” Inf. Process. Lett., vol. 110, no. 21,
pp. 944–949, 2010.

[13] International Civil Aviation Organization, Doc 9303 - Machine Readable
Travel Documents, 7th ed. ICAO, 2015, vol. 1-12.

[14] C. Rathgeb, F. Breitinger, and C. Busch, “Alignment-free cancelable iris
biometric templates based on adaptive bloom filters,” in International
Conference on Biometrics, ICB 2013, 2013, pp. 1–8.

Luca Calderoni received a Ph.D. degree in computer science from the
University of Bologna, where he is currently a Post-doctoral Researcher.
His research activity focuses on privacy and security in digital systems and
smart cities. He has published on location privacy, border controls, secure and
privacy-preserving tracking technologies and cryptographic protocols.

Paolo Palmieri is a Lecturer in Cyber Security at the Dept. of Computer
Science, University College Cork. He holds a PhD in cryptography from the
Université Catholique de Louvain. His research work focuses on cryptographic
protocols for privacy and anonymity, and he has worked on secure computa-
tion, location privacy, and the security of smart cities and IoT.

Dario Maio is a Full Professor of Information Systems with the Dept. of
Computer Science and Engineering, University of Bologna. He is a member
of IEEE, ACM and IAPR. He has published more than 200 research papers
investigating various aspects of computer science including distributed com-
puter systems, computer performance evaluation, database design, information
systems, autonomous agents, pattern recognition, and biometric systems.

https://git.io/v73lY

	Introduction
	Preliminaries
	SBF construction
	SBF verification

	Probabilistic Properties of the Spatial Bloom Filter
	Error taxonomy
	False positives in Bloom filters
	False positives in spatial Bloom filters
	False negatives
	Inter-set errors
	Cells overwriting
	Error probability

	Emersion
	Safeness
	Implementation and experiments
	Analysis
	Number of cells
	Emersion
	False positives
	Inter-set errors
	Safeness

	Relevance to security protocols
	Location privacy and monitoring of critical areas
	(Anonymous) network routing
	Border controls

	Conclusion
	Appendix: Supplemental material
	References
	Biographies
	Luca Calderoni
	Paolo Palmieri
	Dario Maio

